• The Great Energy Challenge

    The Great Energy Challenge

    The National Geographic initiative is a call to action to become actively involved, to learn more and do more—to change how we think about and consume energy so that we can all help tackle the big energy questions.

  • The Case of the Missing Carbon

    The Case of the Missing Carbon

    Burning fossil fuels, humans pump CO2 into the atmosphere. Fortunately, plants and ocean waters gather it in. But what if this great recycling system went awry?

  • Gallery: Antarctica Warming

    Gallery: Antarctica Warming

    Global warming is melting Antarctica's ice—and threatening its wildlife. Take a look at this remote area under threat.

Photo: Tires

Photograph by Sarah Leen

Biofuels have been around as long as cars have. At the start of the 20th century, Henry Ford planned to fuel his Model Ts with ethanol, and early diesel engines were shown to run on peanut oil.

But discoveries of huge petroleum deposits kept gasoline and diesel cheap for decades, and biofuels were largely forgotten. However, with the recent rise in oil prices, along with growing concern about global warming caused by carbon dioxide emissions, biofuels have been regaining popularity.

Gasoline and diesel are actually ancient biofuels. But they are known as fossil fuels because they are made from decomposed plants and animals that have been buried in the ground for millions of years. Biofuels are similar, except that they're made from plants grown today.

Much of the gasoline in the United States is blended with a biofuel—ethanol. This is the same stuff as in alcoholic drinks, except that it's made from corn that has been heavily processed. There are various ways of making biofuels, but they generally use chemical reactions, fermentation, and heat to break down the starches, sugars, and other molecules in plants. The leftover products are then refined to produce a fuel that cars can use.

Countries around the world are using various kinds of biofuels. For decades, Brazil has turned sugarcane into ethanol, and some cars there can run on pure ethanol rather than as additive to fossil fuels. And biodiesel—a diesel-like fuel commonly made from palm oil—is generally available in Europe.

On the face of it, biofuels look like a great solution. Cars are a major source of atmospheric carbon dioxide, the main greenhouse gas that causes global warming. But since plants absorb carbon dioxide as they grow, crops grown for biofuels should suck up about as much carbon dioxide as comes out of the tailpipes of cars that burn these fuels. And unlike underground oil reserves, biofuels are a renewable resource since we can always grow more crops to turn into fuel.

Unfortunately, it's not so simple. The process of growing the crops, making fertilizers and pesticides, and processing the plants into fuel consumes a lot of energy. It's so much energy that there is debate about whether ethanol from corn actually provides more energy than is required to grow and process it. Also, because much of the energy used in production comes from coal and natural gas, biofuels don't replace as much oil as they use.

For the future, many think a better way of making biofuels will be from grasses and saplings, which contain more cellulose. Cellulose is the tough material that makes up plants' cell walls, and most of the weight of a plant is cellulose. If cellulose can be turned into biofuel, it could be more efficient than current biofuels, and emit less carbon dioxide.

Share